Abdul Shaik1 Daniel Brinkman2 Christian Ringhofer1 Igor Sankin3 Dragica Vasileska1

1, Arizona State University, Tempe, Arizona, United States
2, San Jose State University, San Jose, California, United States
3, First Solar, Perrysburg, Ohio, United States

Numerical simulation of solar cell device physics for predicting the performance, design and optimization of solar cells is a well explored active area of research. There are many tools and software packages like AFORS-HET, SCAPS-1D, AMPS-1D, PC1D, Silvaco TCAD, Sentaurus TCAD, etc., which are available freely or commercially, to perform numerical simulation of solar cells. The fundamental physics equations solved are continuity equations for charge carriers, namely electrons and holes, and the Poisson equation for electrostatic potential. In the continuity equation for electrons and holes the generation and recombination term is modeled through radiative processes, the SRH process, the Auger process etc. For the SRH generation recombination process an effective lifetime is assumed in the modeling. Combining this model with the boundary conditions, light and temperature simulation conditions, one can calculate I-V curves, efficiencies, fill factors etc., for the solar cell.
As the solar cell ages performance is affected. This can be microscopically explained through the transport of different defects present in the solar cell. The transport of defects can also cause metastability in solar cells. In our previous work we explained the metastable behavior of CdTe solar cells by studying the Cu related defect transport along with the carrier transport.
In this work, we present a novel Unified Solver for studying carrier and defect transport on an equal footing. The generation recombination term in the continuity equation for defects corresponds to the formation and transformation of defects. This formation and transformation of defects along with generation and recombination process for charge carriers is represented as a defect chemical reaction. Hence, we call our model as reaction-drift-diffusion modeling of solar cell. The drift-diffusion equations for defects require the diffusion constants and activation energies of the defect to be known and the defect chemical reaction require reaction rate constants to be known. These parameters are calculated using Density Functional Theory (DFT).
Since the main goal of our research work is to study short time metastability and long-time reliability concerns of cadmium telluride (CdTe) photovoltaics, special attention has been placed in the design of the solver to be able to produce results ranging from ns to hours/days/years. The solver gives us possibilities to explicitly account for all transient effects with free carriers (simulation of time resolved photoluminescence) and defects (simulation of performance instabilities, IV hysteresis etc). Various generation recombination processes can be represented as additional defect chemical reactions. Moreover, the Unified Solver supports accurate treatment of interfaces and grain boundaries that are crucial for the explanation of the operation of CdTe and other chalcogenide PV technologies.
The Unified Solver is benchmarked against Silvaco simulations of a homojunction and heterojunction solar cell. Excellent agreement is observed between the Unified Solver and Silvaco results for the key solar-cell parameters (short-circuit current and open-circuit voltage). Next, the Unified Solver is employed in constant temperature 2D simulation of chlorine diffusion annealing in a cadmium telluride (CdTe) system under insulating boundary conditions (isolated system). Chlorine is introduced in the system as a neutral interstitial at a half corner of the (1um×1.2um) structure. The concentration of chlorine interstitial is 1e16 cm-3 and the system is kept at a temperature of 750K. The sample is annealed for 240s using the test case of chlorine defect reactions. The time evolution of chlorine substitutional defect (ClA+) is presented. Emulation of process temperature profiles is also presented in the talk.