Sheeba Dawood1 Hemali Rathnayake1

1, University of North Carolina, Greensboro, North Carolina, United States

Metal organic framework (MOFs) has emerged as an exciting class of porous materials, which can be structurally tuned by choosing organic-inorganic components based on the desirable application. For decades, metal organic framework with structural versality and tunable porosity have provided promising applications such as gas storage, drug delivery, sensing and catalysis. However, due to its low conductivity or insulating properties, the growth of metal organic frameworks in electronic applications is in its infancy. But by careful selection of organic-inorganic components and synthesis procedure, MOFs can exhibit conductivity and also porosity with diversified morphology. Here we report, a new methodology of synthesizing metal organic framework (IRMOF-8), using 2, 6-naphthalene dicarboxylic acid as organic linker with metal (M=Zn) via thermal annealing-based technique. Unlike conventional methods, which take about 72 hours, this technique can produce metal organic frameworks in 7 minutes at 2500C in organic solvents, exhibiting best performance characteristics. The synthesized naphthalene-based metal organic frameworks were confirmed by various characterizations techniques such as X-ray diffraction spectroscopy, thermogravimetric analysis, UV-visible spectroscopy, FT-IR spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy. The FT-IR spectra of these MOFs showed a stretching frequency at 1400 cm-1confirming the co-ordination of 2,4 Naphthalene dicarboxylic acid to zinc (C-O-Zn). The crystalline properties of this MOF were analyzed and confirmed by X-ray diffraction spectroscopy. The chemical composition of these metal organic frameworks was analyzed by energy dispersive spectroscopy that confirmed the presence of carbon, oxygen, and respective metals (M=Zn). Thermal stability was analyzed by thermogravimetric that showed the decomposition of host framework at the temperature of 4000C-5000C. Scanning electron microscopy images of this MOF showed diversified morphologies for different metals (Zn) with the size ranging from 100 nm-300 nm. The yield of MOF synthesized via thermal annealing-based technique resulted about 80% that is twice of the conventional techniques. The electrical properties were determined using Kiteley source meter controlled by a Photo emission TEC.INC (PET) I-V test system. Perhaps, the proposed thermal annealing-based technique was successful in synthesizing conductive MOF suggesting that MOF based electronic devices can be constructed.