Description
Date/Time: 04-23-2019 - Tuesday - 05:00 PM - 07:00 PM
Konrad Rykaczewski1 Robert Wang1

1, Arizona State University, Tempe, Arizona, United States

Development of polymeric composites with high thermal conductivity is necessary for thermal management of microelectronics. Percolation of metallic filler particles and reduction of the thermal contact resistance between individual particles (e.g. via thermal or electromagnetic fusing) can significantly improve thermal conductivity of composites. However, composite materials with connected metallic particles can also conduct electricity, creating a risk of short-circuiting in chip-board and the inter-chip gaps. In this presentation we theoretically show that this problem can be resolved with the application of fusible metallic coatings to the tips of nanowires with thermally conductive, but electrically insulating cores [1]. Specifically, we use Monte Carlo simulation-validated analytical models that relate the ratio of the coated and total nanowire lengths to the fraction of fused, and thus conductive, bonds within percolating networks of these structures to show that thermally conductive, but electrically insulating composites can be achieved using these novel nanostructures. We discuss silver-like coatings, which only form conductive bonds when contacting the silver-like coating of another nanowire as well as liquid metal-like coatings, which form conductive bonds regardless of whether they contact a coated or uncoated segment of another nanowire. We show that use of the liquid metal-like coatings will yield twice as many thermally conductive bonds as silver-like coatings while maintaining a negligible risk of electrical short-circuiting.

[1] K. Rykaczewski and R. Wang, Applied Physics Letters, 112, (13), 131904, 2018.

Meeting Program
Poster-Icon

Symposium Sessions

5:00 PM–7:00 PM Apr 23, 2019 (US - Arizona)

PCC North, 300 Level, Exhibit Hall C-E