Description
Date/Time: 04-23-2019 - Tuesday - 05:00 PM - 07:00 PM
Peter Sushko1 Richard Williams1 Christopher Barrett1 Marvin Warner1

1, Pacific Northwest National Laboratory, Richland, Washington, United States

Ongoing efforts in low temperature experimental research, including the work on quantum materials and high energy physics experiments, underscores the need to achieve and maintain ultra-low temperatures. Of particular interest are metal/non-metal systems, in which the dominant mechanism of heat transfer switches at the interface, and nanomaterials, in which structural and chemical deviations from idealities may lead to significant deviations from the Fourier law.

We investigate how phonon component of the heat flux across nanoscale metals is affected by point defects, dislocations and model two-dimensional defects. Gaseous models for the heat source and heat sink are adopted and the computations are conducted using classical molecular dynamics approach. Analysis of the heat transfer coefficients, as derived via Green-Kubo relation, suggests that surface nanopatterning and chemical defects have larger an effect on the heat propagation than intrinsic defects.

Meeting Program
Poster-Icon

Symposium Sessions

5:00 PM–7:00 PM Apr 23, 2019 (US - Arizona)

PCC North, 300 Level, Exhibit Hall C-E